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T
he experimental study of dynamics
has been deeply transformed during
the past generation by new technol-

ogies that acquire digital images in vast
quantities, allowing one to record motion
of objects of interest, one-by-one in real
space and time.1�7 When data sets of this
kind are analyzed, the capacity to track
individual objects over a long time allows
not only quantification of individual varia-
tions within populations but also complex
temporal fluctuations of individual moving
elements. The valuable information offered
by huge data sets goes beyond what can be
obtained from the classic ensemble-averaged
approach andhasoftenprovidedunexpected
mechanistic insights. This approach of “deep”
statistical imaging has already led to signifi-
cant progress in a variety of fields, from
physical sciences such as diffusion6�11 and
other dynamics in condensed matter5,12,13

to biological sciences such as ecology14 and
cell biology.15�17 Much important work
revolves around improving experimental
techniques to collect the data.18,19

Here we ask a different question: how to
analyze such data for embedded informa-
tion? For many problems, but not all, it is
reasonable to assume random fluctuations
with some probabilistic distribution around

an average value. However, dynamics in the
physical and biological worlds are often
heterogeneous. When the statistical char-
acter of the process changes intermittently
with time due to stochastic switching be-
tween coexisting and often competing mi-
croscopic processes,1�17 averaging over
these distinct processes may give mislead-
ing results.
Progress is impeded by the paucity of

methods to identify these distinct processes
and to quantify them, especially in the
presence of noise in the data. An ideal
method would be automated to handle
large data sets, involve no judgment on
the part of the analyst, and resolve rapid
dynamic changes. In practice, to differentiate
different modes of motion, one selects a
metric of interest. Some of the metrics
commonly used with aggregates of data
include the scaling of mean square displa-
cement (MSD),20�22 correlation functions,23,24

diffusion coefficient,25 and other trajectory
characteristics.26�28 While each of these per-
formswell for certainparticular systems, these
families of methods require prior information
or assumptions about the character of the
motion.
A delicate matter is to select the appro-

priate time window over which to seek
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ABSTRACT We describe a simple automated method to extract and quantify transient

heterogeneous dynamical changes from large data sets generated in single-molecule/particle

tracking experiments. Based on wavelet transform, the method transforms raw data to locally

match dynamics of interest. This is accomplished using statistically adaptive universal thresholding,

whose advantage is to avoid a single arbitrary threshold that might conceal individual variability

across populations. How to implement this multiscale method is described, focusing on local

confined diffusion separated by transient transport periods or hopping events, with three specific examples: in cell biology, biotechnology, and glassy

colloid dynamics. The discussion is generalized within the framework of continuous time random walk. This computationally efficient method can run

routinely on hundreds of millions of data points analyzed within an hour on a desktop personal computer.
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dynamic changes of the observables. Too short a time
can exaggerate noise but too long sacrifices temporal
resolution and increases the chances of undesired
mixing of distinct processes that switch more rapidly.
Further, one needs to accumulate reliable statistics, but
rare and transient events are too-readily averaged out,
especially as reliability typically requires at least hun-
dreds of data points. Also problematical is to select a
criterion by which to distinguish random fluctuations
from real changes in dynamics; there is no general way
to avoid judgment in selecting these thresholds, and
judgment risks being arbitrary, too subjective, and too
demanding of different definitions depending on the
case at hand. Taking a different approach, probability
inference can be used to choose between models,
maximizing the likelihood that a certain model fits
the data.22,25,29 However, this presents its own com-
plexity, especially because it requires prior assump-
tions in associating the data to particular models.
This paper presents wavelet transforms and univer-

sal thresholding as useful techniques. Developed in the
field of digital signal processing,30�33 here we show
how to apply wavelet analysis to detect dynamic
changes hidden in time-resolvedpositional trajectories
of physical and biological systems. The advantage of
this method is that it analyzes data on multiple scales
simultaneously by decomposing time series into a full
set of time scales while preserving information in time
and frequency domains simultaneously. The following
discussion presents first the method, then demon-
strates its usefulness in three dynamical physical
systems involving soft and biological matter, and con-
cludes by generalizing the discussion. Supporting In-
formation contains a tutorial of how to implement the
method.

RESULTS AND DISCUSSION

Methodology. The qualitative principle of wavelet
analysis is simple:30�32 moving along a time series of
observables, transient changes in dynamics result in
wavelet coefficients with large absolute values, as
wavelet transform is known to be very effective at
detecting discontinuity. Figure 1a shows schematically
the main idea: a time series of raw data is expanded to
time-resolved wavelet coefficients on different scales
(or frequency), by convolution over local times with
the wavelet basis function. Background “noise”, which
represents in part random fluctuations, in part the
mixing of different processes in the system, is mea-
sured on small scales (high frequency) and projected
statistically to larger scales (low frequency) generating
a “universal threshold” that naturally adapts to the
noise amplitude. This threshold allows one to discrimi-
nate dynamics of interest, “signal” that exceeds this
threshold, on larger scales.

One inspects a timeseriesof anobservable (Figure1b).
There results a spectrumofwavelet coefficients against

time and scales (Figure 1c). Over small scales, the
wavelet coefficients are dominated by featureless ran-
dom fluctuations, whereas at large scales, the coeffi-
cients of given time points are heavily distorted by
dynamics extending for long times around it. Impor-
tantly, at the intermediate scales, transient changes
above background correspond to distinct bands in
wavelet coefficients that can be resolved with confi-
dence. Detecting the convergence to these local max-
ima of wavelet coefficients on these scales localizes
dynamic heterogeneity, the information we seek. As
explained below, this local detection has a time resolu-
tion better than the exact scale onwhich this analysis is
carried out. This statistically rigorous multiscale meth-
od overcomes the current difficulties in analyzing
heterogeneous dynamic data as we have introduced.

To implement the method, there are four steps: (a)
choose the wavelet basis function; (b) perform the
wavelet transform; (c) determine the scale and thresh-
old; (d) assign the physical processes.

Wavelet Selection. The wavelet transform calculates
the local integral values of time series over various
scales with weighting defined by the wavelet function
used. Different scales generate a times series of wave-
let transform coefficients corresponding to different
time scales. Specifically, the wavelet transform30�32 of
a time series s(t) on scale a is

C(t0, a) � 1
a

Z
R
s(t)ψ

t � t0
a

� �
dt (1)

where the wavelet function ψ has width a, centered at
time t0. To satisfy Lipschitz continuity, local maxima of
C(t0,a) correspond to singularities in s(t). Therefore, to
detect dynamical changes, one searches for regions
converging to local maxima in C(t0,a) along t0.

The appropriate wavelet depends on the nature of
the dynamic heterogeneity for which one searches.
Ideally, to choose an efficient wavelet, one needs to
maximize the cross-correlation between wavelet and
the signal of interest, as it would produce highest local
maxima in wavelet domain and thus improve the
localization of the signal. This can be achieved by
screening through known wavelet libraries: Daubechies,
Symmlets, Coiflets, and many others.31 However,
we emphasize that the choice of wavelet must be
physically driven. For example, if the background con-
tains fluctuations around an average level but the
signal shifts the average, then one selects ψ with one
vanishing moment (such as Haar wavelet, also known
as Daubechies 2 wavelet), such that local maxima in
C(t0,a) correspond to discontinuity above this constant
fast fluctuating component. This situation includes all
three examples discussed below, as well as single-
molecule FRET time traces that have been reported
earlier.34,35 As another example, when the dynamics
exhibits abrupt, fast back-and-forth jumps between
several positions/states (e.g., harmonic oscillators in

A
RTIC

LE



CHEN ET AL. VOL. 7 ’ NO. 10 ’ 8634–8644 ’ 2013

www.acsnano.org

8636

double potential wells), the detection should target
maximum curvature in the trajectory. Then one selects
ψ with two vanishing moments (such as Daubechies 4
wavelets) such that local maxima in C(t0,a) correspond
tomaximumcurvature in trajectories.30 Similarly, when
targeting discontinuity in gradients, Daubechies 6
wavelets with three vanishing moments should be
used.30 While the mathematical steps of implanting
this method are straightforward, as a premise, one
needs judicious judgment of what type of motion to
target.

In the three physical examples discussed in detail
below, we choose the wavelet on a physical basis.
These are the cases of local confined diffusion sepa-
rated by transient transport periods or hopping events
so the appropriate wavelet should have one vanishing
moment. In particular, “Haar wavelet” quantifies the
displacement between the average position of npoints
before and after position i along a trajectory with equal
weighting to the position of all the points around the
center point:

C(i, 2n) ¼ 1
n ∑

iþ n

j¼ i

xj � ∑
i� n

j¼ i

xj

 !
(2)

What this means physically is quantifying the drift of
mean position over time. For Brownianmotion, there is
no drift of the mean position, which wanders around
zero, but for directional transport, drift is decidedly
finite. The point may seem paradoxical, as everyone
who has tossed coins is familiar with the fact that the
numbers of heads and tails are rarely equal, due to
statistical fluctuations. It is a matter of scale: as the time
scale increases, the difference between the mean posi-
tions becomes pronounced. The wavelet transformmust
be evaluated over scales that are long enough.

Implementing the Wavelet Transform. The wavelet is
mathematically defined as local integrals according
to eq 1, but in practice, it is more efficient computa-
tionally to compute the coefficients by correlations
between a short section of the time series data and the
chosen wavelet, shifting and stretching the wavelet
according to t0 and scale a. Using MATLAB for conven-
ience, we compute continuous wavelet coefficients
at real, positive scales of trajectories projected onto
x and y dimensions separately. An example is shown in
Figure 1c. This shows the result of a trajectory trans-
formed into time series of coefficients over various
scales.

Choosing the Appropriate Scale and Threshold. One must
set a scale on which a threshold is used to decide what
differences are large enough to matter. As a practical
protocol, we find it convenient to select scale and
threshold with the following iterated sequence: we
typically make an initial guess of the scale, ~a, on which
distinct bands of wavelet transform coefficients start to
emerge (Figure 1b). This initial guess can be flexible, as
the banding pattern in wavelet domain typically spans
many scales. Indeed, as described belowwith a specific
example about electrophoresis, comparable perfor-
mance can be achieved on a broad range of scales.
Then we use what is called “universal thresholding” on
this scale.31 For the chosen scale ~a, the threshold is
projected from scale a = 2 using

δ ¼ ησ2

ffiffiffiffiffiffiffiffiffiffi
2lnN

p
(3)

where N is the number of data points in this trajectory
excluding first and last ~a/2 data points, σ2 is the esti-
mate of the standard deviation of noise on scale 2, and
η is the projection factor. To detect persistent transport
above Fickian diffusion, we use η = (~a/2)1/2 because

Figure 1. Main idea of wavelet analysis implemented in this study. (a) Schematically: the information embedded at small and
large scales in a time series of raw data is expanded by wavelet transform. The information at small scale provides a global
estimate of “noise” level and generates a universal threshold that can be projected onto long times, allowing one to localize
signal from noisy background. (b) Spatial position plotted against time in an illustrative trajectory. (c) Correspondingwavelet
coefficients are plotted against time as the result of local integrationusing theHaar continuous timewavelet transform (CWT).
Red, positive values; blue, negative; green and yellow, near-zero. Dynamics of interest are identified on the scale (frequency)
over which bands of coefficients are distinct. Information is lost if the scale is too large (frequency too small), while noise
overwhelms events if the scale is too small (frequency too high). The usable range of scales is between two black lines. Arrows
in panel (b) point to two events of interest for further analysis. A time span of background noise is also highlighted in (b).
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random Gaussian noise arising from Fickian diffusion
grows with

√
t. As coefficients on scale 2 are a mixture

from multiple processes, the standard deviation of
noise cannot be calculated directly from the data, so
we estimate σ2 using the median absolute deviation
(MAD)31

σ2 � mediani(jC(i, 2)j)
0:6745

(4)

Finally, we refine the scale and threshold through
iterated assignment and validation of training trajec-
tories, if necessary. Criteria by which to decide whether
refinement is needed are (a) whether the assignments
are insensitive to small changes of scale and threshold,
and (b) whether other metrics, such as MSD and cor-
relations, are separated in ways that are anticipated
based on physical characters of these processes.

Note that, while this detection method is local, the
estimate of noise level is global, as the entire trajectory
is used to estimate the noise level. This gives reliable
and fully automatic thresholding adaptive to each
individual trajectory, with thresholds reflecting the
heterogeneity between trajectories. Although this uni-
versal threshold assumes a Gaussian noise, in imple-
menting this method, we have noticed empirically
that, regardless of the exact statistical characteristics
of noise, a wide range of scales give equally robust
separation, as will be illustrated below. Physically, the
reason is that the dynamics of interests are so well-
separated that the details do not make a decisive
difference.

Interpreting Data To Assign Physical Process. Naturally,
the physical process of interest depends on the prob-
lem at hand. In the sections below, we present three
examples of distinguishing between signal and noise.
In all three examples, the signal contains heterogeneity
that is characteristic of the system, and the noise
describes the Brownian component that constantly
fluctuates as background.

Assignment proceeds by combining the time per-
iods during which wavelet coefficients on scale ~a

exceed the threshold δ. For multidimensional trajec-
tories (e.g., x, y, and z in Cartesian space), this is
repeated for each dimension, and the results are
combined. When the trajectories are isotropic, a
common threshold can be used for all dimensions.
When dimensions are statistically dependent, separate
thresholds should be used for each dimension. The
confidence of assignment depends on the trajectory
length, especially for very short trajectories, as then
a reliable estimate of noise level becomes impossible.
We typically discard trajectories shorter than 300 data
points.

Three Examples. To test the efficacy of this method
and to illustrate the operation in practice, we illust-
rate this wavelet analysis with three examples: to
distinguish active transport from passive diffusion of

single-particlemotion in cell biology, to identify pauses
of single-molecule DNA trajectories in electrophoretic
mobility, and to capture intermittency of single-
particle glassy dynamics. Focusing on the first example,
the latter two examples illustrate that this method is
general.

Active Transport in Living Cells. Intracellular trans-
port of endosome “cargo” proceeds by a stochastic
switching between passive diffusion and active trans-
port along microtubules, dragged by motor proteins,
kinesin and dynein.36 This switching between two
types of motions, active and passive, is known to
happen on subsecond time scales; in function, it
enhances cell reaction kinetics and maintains cellular
functions.37 It is of fundamental significance to resolve
active processes uncontaminated by passive fluctua-
tions, but to do so,methods are needed to discriminate
between them.

The data are contained in a Ph.D. thesis.38 Using
fluorescence microscopy (see experimental details
below), we obtained trajectories of EGF-containing
endosomes in living HeLa cells, and we implemented
wavelet analysis to assign passive and active motion.
From raw data of trajectories illustrated in Figure 2a,b,
two types of motions cannot be distinguished on
short time scales. We computed the Haar wavelet
coefficients at a scale of 32 frames for all trajectories,
a scale on which banding of wavelet transform coeffi-
cients is clearly distinguishable. The threshold was set
according to universal thresholding with results indi-
cated in gray in Figure 2c; the segments that exceed
the threshold were assigned as active. Combining
results both on x and y, the separation is overlaid on
the original trajectory in Figure 2a, with active portion
highlighted in red. Figure 2d shows that the assigned
active segments were invariably superdiffusive while
passive segments were invariably either diffusive or
subdiffusive, which is reasonable physically.

The major advantage of wavelet analysis, for this
example, is considered to be that universal threshold-
ing is adaptive to heterogeneities between trajectories.
We found the imputed thresholds to vary by 2 orders of
magnitude, depending on the noise level, quantified
by frame-to-frame displacement (Δr) of that particular
trajectory (Figure 3a). We conclude that universal
thresholding is adaptive. Nonetheless, Figure 3b shows
that, according to the trajectory, the imputed active
fraction spanned a wide range that was independent
of the threshold, suggesting that thresholding did
not introduce an artificial bias such as low thresholds
giving large active fraction or vice versa. The arrows
point out trajectories, which are <10% of all, for which,
after the initial assignment, fine-tuning of the thresh-
old was necessary. They were the trajectories that are
statistically biased with a prohibitively large fraction of
active transport to estimate the passive fluctuations
using MAD (eq 4). They were identified during the
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refinement step where, for each individual trajectory,
the mean square displacement (MSD) of the assigned
passive portion was calculated and fit as a power law in
time, ÆΔr2æ � tR, where R < 1 is expected for passive
motion according to physical reasoning. For these
trajectories, the fitted R initially exceeded 1.1, and
the thresholds were decreased and the process was
repeated iteratively until the criterion R e 1.1 was
satisfied. This refinement is a technical compromise for
a small portion of the data that is imperfect; it is not an
intrinsic problem of the method. This process is op-
tional. While we chose to lower the threshold to rescue

the data as much as possible, alternatively, these
biased trajectories can be excluded from the down-
stream analysis.

To test the accuracy of the assignment, we dis-
rupted microtubules using nocodazole, which elimi-
nates active transport, and then the trajectories were
analyzed as before. Fewer than 0.1% of total stepswere
mistakenly assigned as active motion. To further test
the reliability of the wavelet-based assignments, man-
ual checks were performed. We inspected 10 repre-
sentative trajectories, a total of 16 816 image frames,
and manually assigned the active frames. This visual
inspection found that false positives of active steps
amounted to only ∼5% of the total active steps. Also,
visual inspection suggested that ∼20% of the active
steps were missed by the wavelet analysis. Similar
performance was confirmed on simulated trajectories
(Methods section). As visual inspection was subjective,
we are unable to decide to which method more
confidence should be given. Our main conclusion is
two-fold. First, errors of the wavelet analysis tended to
err on the conservative side, tending to mistakenly
assign active steps as passive motion. Detailed argu-
ments concluded that these misassignments did not
bias the data.38 Second, this conservatism resulted in
excellent discrimination of the active steps themselves.

The visual inspection suggested that misassign-
ments occurred at the transition of active and passive
motion. Other false negatives identified manually are
more debatable. For example, sometimes the active
motion circled around or reversed directions, as shown

Figure 2. Example: a cell biology problem involving single-particle imaging of endosome transport along microtubules by
molecularmotors. (a) From a plot of the trajectory, x against y in Cartesian coordinates, wavelet analysis identifies active (red)
and passive (gray) segments of the trajectory. (b) During this trajectory acquired by time-lapse imaging, the frame-to-frame
displacement in the x direction (20 fps) is plotted against time. (c) Wavelet coefficients of this data at a scale of 32 frames
are plotted against time, indicating the middle band of small coefficients that we identify with passive diffusion and the
extreme values of wavelet coefficients that we identify with active motion. (d) Mean square displacement (MSD) is plotted
against time on log�log scales for “active” (red) and “passive” (gray) segments of this trajectory. The shaded gray region
demarcates the lower limit of Fickian diffusion with log�log slope 1 and upper limit of directional motion with log�log slope 2.
These trajectories imputed from wavelet analysis split into two families, subdiffusive (passive) and superdiffusive (active).

Figure 3. Universal threshold is adaptive and unbiased.
Continuing the cell biology example, for this scatter plot
of 3443 endosome transport trajectories, each trajectory's
threshold is determined individually and plotted against (a)
average frame-to-frame displacement (Δr) and (b) imputed
active fraction of that trajectory. The black lines are drawn
to guide the eye, indicating the threshold depends on noise
level but not the active portion of individual trajectories.
Arrows note a subpopulation of trajectories (<10% of the
total), for which universal thresholding needs refinement.
The reasons for refinement are described in the text, and the
text describes how to fine-tune the threshold iteratively and
automatically.
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in Figure 4. Depending on the dynamics of interest, one
may or may not want to identify these motions. The
Haar wavelet (Daubechies 2) will assign them as pas-
sive (highlighted by arrows in Figure 4a) as the drift of
mean position approaches zero at those points, while
wavelet with 2 vanishing moments (here we use
Daubechies 4 for simplicity), which targets motions
that introduce abrupt changes in local curvature, will
assign them as active (Figure 4b). So an appropriate
wavelet should be selected based on the need.

Advantages of this analysis are considered to be
mainly two. First, large data sets were processed auto-
matically in a short time. Visual inspection would have
been prohibitive; the visual inspection of 10 trajec-
tories just mentioned consumed roughly 5 h, whereas
on a PC 3443, trajectories were analyzed in 10 min.
Second, the wavelet analysis suggested significantly
new conclusions about the physical process. Wavelet
analysis identified that EGF-containing endosomes in
HeLa cells spend around 30% of the total time (879 427
out of 3 211 776 steps) in active transport, which is
consistent with the manual assignment of 27%. In
contrast, the fraction found by existing methods re-
ported in the literature21,23,26 was less than 5% with
more false positives (see Methods section for details).
Furthermore, while subjective visual inspection sug-
gested that the average duration of continuous active
transport is ∼1.1 s, this number was ∼0.75 s using
wavelet analysis but less than half of this (∼0.3 s) using
the other methods.21,23,26 Although visual inspection
can be subjective and likelymisses short active durations,
these simple but important measurements are consid-
ered to indicate that wavelet analysis presents a signifi-
cant improvement. This high-throughput analysis can
provide statistics needed to compute velocity autocorre-
lation functions, velocity distribution functions, as well as
directional persistence of active transport.

Intermittent Mobility in DNA Electrophoresis. Recent
single-molecule measurements from this laboratory
show that, when λ-DNA migrates through agarose gel
under the action of an electric field, the time-dependent

position of individual molecules proceeds in spurts with
pauses between.39 This is another problem of how to
separate signal (the spurts) fromnoise (thepauses), in the
presenceof uninterestingbackgroundnoise.While to the
eye it may be obvious that molecular mobility exhibits
two states (Figure 5a), to automatically separate these
two is challenging, as the frame-to-frame displacements
of center of mass show no temporal pattern above
random fluctuations (Figure 5b).

To discriminate these twomobility states, a wavelet
analysis was used on each single-molecule trajectory.
On scales 8 and 32, the universal threshold separated
the pauses and jumps nicely for λ-DNA in 1.5 wt %
agarose gel under an electric field of 12 and 6 V/cm,
respectively (Figure 5a). At each field strength, a range
of scales gives good separation (Figure 5c). Too-small
scales result in missing a large portion of spurts;
too-large scales assign mistakenly many pauses as
spurts. The envelope of usable scales (which still
spans a broad range) decreased with field strength
because, as the lifetime of pausing shortened as the
force on the DNA molecules increased, shorter scale
became better at most accurately assigning these
faster transitions.

Figure 4. Choice of wavelet function depends on the phy-
sical problem. Continuing the cell biology example, a zone
where the trajectory traces out loops corresponds to the
boxed area in Figure 2a. (a) Implementing the Haar wavelet,
we assign a large portion of the loops (indicated by the
arrows) as passive (gray), whereas (b) implementing the
Daubechies 4 wavelet, we assign them as active (red), but
these two wavelets make the same identification elsewhere
in the trajectory. The Haar wavelet is nonetheless preferred
except for special circumstances owing to its simple, phy-
sical interpretation as a drift of mean position.

Figure 5. Example: a biotechnology problem involving
single-molecule imaging of DNA electrophoresis in agarose
gel as described in the text. (a) Illustrative trajectories show-
ing that DNA center of mass motion at 12 V/cm is discontin-
uous, the wavelet analysis identifying spurts of rapidmotion
(red) and pauses between spurts (gray), neither of them
equal to the mean speed. The trajectory at 6 V/cm drive is
discontinuous likewise. (b) Frame-to-framedisplacement of a
6 V/cm trajectory (33 fps) is plotted against time. (c) This
panel compares efficacy over a broad range of scale of
analysis as well as drive voltage. Over a broad intermediate
range of scale, themobility separation of this electrophoresis
data is robust without depending on the specific choice of
scale. Symbols represent examined conditions: solid, suc-
cessful separation; open, poor separation.
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Analyzing ∼1000 trajectories we found that spurts
comprised 30% (68 222/230 057 steps) and ∼60%
(61 436/102 574 steps) of the total time elapsed, under
an electric field of 6 and 12 V/cm, respectively. The
speed during spurts much exceeded the mean speed
(Figure 5a). This significant contrast would not have
been quantified otherwise and provides firm numbers
from which to examine competing electrophoresis
theories.40

Hopping Dynamics in a Colloidal Supercooled Liquid.

It is well-established that dynamics in supercooled liq-
uids is intermittent.12,41,42 As illustrated in Figure 6a, in
both positional and angular space, trajectories are at
first restricted to a narrow region of space, then hop
suddenly to a new region, probably reflecting collec-
tive rearrangements of the neighbors.42 Despite nu-
merous previous studies, such hopping events are hard
to identify automatically in large data sets. The diffi-
culty is that, during hopping, displacements or direc-
tional persistence of the motion does not necessarily
differ from those during caging (Figure 6b), and the
duration of the hopping is typically short, if not in-
stantaneous. Therefore, these events are often char-
acterized ambiguously as “fat tails” of total ensemble-
averaged displacement distributions.6,12,41

However, these abrupt changes present pro-
nounced peaks in wavelet transform coefficients
(Figure 6c). By the methods described above, they
can be located precisely by a wavelet analysis. De-
tecting hopping in this way, one notices hopping

simultaneously in position and rotation, indicating
that rotational motion correlates closely with trans-
lational motion. This observation agrees with our
previous conclusion drawn from ensemble-averaged
correlation functions,42 but from the wavelet anal-
ysis, the evidence of rotational�translational cou-
pling is made more direct.

As this transition is so sharp, and presumably
instantaneous, this example poses a stringent test for
the time resolution of our method. Therefore, we used
the hopping time as the shortest duration of events
that can be detected with wavelet analysis, and this
defines the time resolution of the method. Figure 6d
shows that the time resolution improves when the
scale becomes smaller and the threshold increases.
However, the difference is small, suggesting that the
time resolution is related to but is not limited
by the scale on which the analysis was carried out.
As a rule of thumb, a wide range of scales gives similar
time resolution, ∼5 frames. Further, by chang-
ing the time between evaluations of the data, we
showed that the time resolution is largely unaf-
fected. These tests demonstrated the robustness
of the method and the ability to identify truly transient
dynamics.

With this method, it would be interesting to revisit
the enormous amount of data that is available in the
literature,6,12,41 to directly measure the caging time, as
well as its distributions, when approaching the glass
transition. Further, using these hopping events as

Figure 6. Example: a glassy dynamics problem involving the identification of hopping events. (a) Typical rawdata showing an
angular trajectory; θ plotted against φ (these are the out-of-plane and in-plane angles, respectively) and the concomitant
positional trajectory, x plotted against y, for the index-matched colloidal glass discussed in the text, showing the wavelet-
identified hops (red) between regions of caged motion (gray). (b) Plotted against time, one observes the frame-to-frame in-
plane angular and spatial displacement of these trajectories. (c) Coefficients of the wavelet transformation of the time series,
evaluated at scale of 16 frames, are plotted against time for the in-plane angle and the y spatial position, each threshold
denoted as a horizontal dashed line. The vertical red bar shows the interval when wavelet coefficients exceed the threshold,
which identifies the hop. (d) Dependence of the imputed hopping time, which defines the time resolution of the method, on
the wavelet scale and threshold selected to analyze it. The threshold from universal thresholding is adjusted down or up by a
constant factor of 0.9 (red), 1.2 (green), and 1.5 (blue).
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reference points, one could examine the dynamic
paths and structural organizations around those
events. Information of this kind could be difficult to
obtain otherwise, as rare events of this kind can be
buried deeply in conventional correlation functions
that average over all time.

Generalization. The above three examples are varia-
tions of dynamic processes with rapid motions (jumps)
and waiting periods between them. Such dynamics
can be described as continuous time random walks
(CTRW), widely reported in single-particle tracking
data.43,44 To generalize this discussion, we simulated
standard one-dimensional CTRW trajectories with
power-law-distributed waiting time between steps
and exponentially distributed jump size45 and ap-
plied the wavelet analysis on these trajectories to
identify the jumps. As by construct here, we have
perfect knowledge of where the jumps are, and it
allows us to evaluate the method's performance
more rigorously and explore how the performance
is affected by experimental complications such as
noise level and type. It also allows us to directly
compare alternative techniques to compute the
thresholds.

First we confirmed that, in the ideal case where
there is no noise, wavelet analysis identifies the periods
of motion almost without fault; in Figure 7a,b, the false
positive rate is 0.43% and the false negative rate is
1.43%. Then, we considered complications in practice.
In experiments, multiple sources of noise often coexist,
among them localization error and thermal fluctua-
tion.46 The noise magnitude often increases with time;
for example, signal dims as dye molecules bleach,

which amplifies the localization error in tracking ex-
periments. To evaluate such potential pitfalls, we
added increasing magnitudes of three simulated
types of noise: constant Gaussian noise, noise with
two Gaussian components, and noise with increas-
ing amplitude with time (see Methods for details).
No significant difference in outcome resulted
(Figure 7a,b), demonstrating the robustness of the
method. We also observed that, even when the noise
level was so large that it was comparable to the signal
itself, the false positive rate remained small while even
eyes would have a false positive rate close to 50%.
Consistently, we found more false negatives than false
positives, as the universal threshold is known to be
strict. This “strictness” is desirable as false positives
are more probable to introduce bias in downstream
analysis.

Now we compare other threshold computing tech-
niques, such as SURE (Stein's unbiased estimate of
risk) andMinimax.47 Similar performancewas observed
for the physical situations considered in this paper
(Figure 7c,d). This observation is reassuring, as the
efficacy of separation should not critically depend on
how the wavelet analysis is implemented. Our pur-
pose is to set up a general platform. Of course, other
thresholding techniques, known and well-developed
in the field of digital signal processing, could alter-
natively be employed as appropriate for other needed
circumstances.

CONCLUSION

We have described a robust method to automati-
cally detect dynamic heterogeneity in time series data
that are collected routinely in many laboratories across
various fields. We have applied this method to three
separate examples, in cell biology, biotechnology,
and soft matter physics, to illustrate and validate the
method and to demonstrate its broad usefulness. Since
the analysis makes no assumptions about the physical
nature of the dynamics, we emphasize that themethod
is general. Selecting the wavelet, the scale, and the
threshold are the three main steps of the method, and
our examples along with discussion show when and
how the method's performance depends on the edu-
cated choices that the user makes about these prime
considerations. We note that, while these parameters
need to be chosen on physically motivated grounds,
performance of the method is robust within broad
ranges of parameters and insensitive to various experi-
mental complications.
It is impossible to achieve perfect separationwithout

full knowledge of the microscopic mechanism. One
only can do so with a certain level of statistical con-
fidence, depending on the method used. Apart from
the wavelet method described in this paper, the exist-
ingmethods fall into two categories. One class is based
on fitting the data to presumedmodels. A second class

Figure 7. Analysis of simulated continuous time random
walk (CTRW), showing how the analysis depends on
various amounts of added noise type and noise level. Noise
level is measured in multiples of standard deviation of the
signal, σs. First, for different types of noise, the dependence
onnoise amplitude is shownof the false positive rate (a) and
false negative rate (b): zero noise (red squares), single-
component Gaussian noise (green asterisks), compounded
Gaussian noise (magenta circles), time-varying noise
(blue triangles). Also, for three thresholding methods,
the dependence on noise amplitude is shown of the false
positive rate (c) and false negative rate (d) plotted
against noise amplitude for three thresholding methods
and single-component Gaussian noise: universal threshold
(red squares), SURE (green asterisks), and Minimax (blue
circles).
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is based on ensemble-averaged quantities which suffer
from incompatibility between time resolution and
statistical reliability. With three applications discussed
above, and in another test of the method using

simulated data whose statistical character was known
precisely by direct input of the data, we have discussed
how awavelet approach can aid in going beyond these
limitations.

METHODS

Active Transport. Endosomes in HeLa cells were fluorescently
labeled by incubating the cells with 0.15 μg/mL biotinylated
EGF complexed to Alexa-555 streptavidin (Invitrogen) for
20 min. The endosomes were tracked under physiological con-
ditions on a home-built microscope in a highly inclined illumi-
nation optical (HILO) geometrywith the laser beam inclined and
laminated as a thin optical sheet with a thickness of∼1 μm into
the cells.48 To avoid focal plane drifting, the objective was
simultaneously heated and immersion oil with ultralow fluores-
cence standardized at 37 �C (Cargille) was used. Fluorescence
images were collected by a back-illuminated electron multi-
plying charge-coupled device (EMCCD) camera (Andor iXon
DV-897 BV). Typically, each movie lasted 4000 frames at a frame
rate of 20 fps. The movies were converted into digital format
and analyzed using single-particle tracking programs,49 locat-
ing the center of each particle in each frame and stringing these
positions together to form trajectories. The tracking uncertainty
was <5 nm.

Active Transport Simulation. To validate wavelet analysis on
active transport, we simulated trajectories for which the true
statistics are known. The following properties were fed into
simulations: (1) the active transport had an exponential dis-
tribution of step size, the average being the experimentally
measured value,∼40 nm/step (50ms per step); (2) the direction
between adjacent active steps was allowed to vary by an angle
selected at random from a uniform distribution bounded by
π/50 to mimic the upper limit of the curvature observed in
experimental trajectories (∼1 μm); (3) fluctuations perpendicu-
lar to linear active transport were introduced as aGaussian noise
with width equal to the experimentally measured value of
40 nm; (4) passive motion was simulated so as to generate
subdiffusive MSD curves similar to those we observed in cells
whose microtubules had been disrupted by nocodazole; this
was accomplished by positioning the steps randomly within an
area defined by a 2D Gaussian spreading function centered at
the average position of the previous 50 passive stepswithwidth
of 100 nm; (5) the transition between passive and active motion
was assumed to be Poissonian with transition probabilities set
to reproduce the observed average length of active runs, which
was 20 steps (∼1 s), the total active portion being ∼20%.

Implementation of Existing Methods That Detect Active Transport. To
compare the performance, we implemented three existing
methods in the literature and calculated the false positive
and negative rates of eachmethod. False positive rate is defined
as the ratio between the number of steps that are falsely
classified as active and the number of true passive steps by
manual inspection, and vice versa for false negative rate.
The three methods use speed correlation,23 asymmetry,26 slope
of MSD, and standard deviation of angle correlation21 as
the characteristics to define active transport. These quanti-
ties were calculated for each point in the trajectory using a
rolling window. The rolling window size was estimated as
described.21,23,26 The window size must to be long enough for
statistical significance but shorter than the duration of the
active transport. Since the average duration of active motion
is estimated to be around 1 s using the wavelet analysis, the
window size was selected to be 11 in our analysis, which is
about half of the average duration. The odd number was used
to allow equal number of points before and after the point of
interest in the rolling window. The Lmax for the asymmetry
method was set at 71 to match the longest possible duration of
active motion.

The thresholds for all three methods were determined
from Brownian simulation. One hundred Brownian trajectories

of N = 1000 frames with 20 fps were simulated for diffusion
coefficientD=0.001μm2s�1. The trajectorieswere composed of
steps with a uniform probability distribution for step direction
and an exponential probability distribution for step length with
a mean of (4DΔt). For consistency with the literature,21,23,26 the
threshold was defined for each parameter so that 99% of the
simulated trajectories were classified as passive. These thresh-
olds were designed to include 1% false positives, but the real
performance was worse according to our validation test. The
thresholds for speed correlation, asymmetry, slope of MSD, and
standard deviation of angle correlation were 0.886, 1.25, 2( 0.4,
and 1.1, respectively. We verified that the thresholds were
sensitive to neither N nor D. When comparing the active assign-
ment using these thresholds with manual selection, we saw that
fewer than 20% of the segments that were marked active
manually were identified as active by these methods. We there-
fore iteratively lowered the threshold for each method until
reaching a similar performance achieved by wavelet analysis
(80�90% of the segments that were marked active manually
were identified as active by the respective method). However, in
doing so, we saw a sharp increase of false positive to ∼20%.

Electrophoresis. λ-DNA, covalently labeled by rhodamine
(Mirus), was embedded within 1.5 wt % agarose gel (Fisher,
molecular biology grade, low EEO) in the presence of 1� TBE
and glucose oxidase-based anti-photobleaching buffer. Imag-
ing and tracking details are published elsewhere.39 The strength
of the electric field was 6 to 12 V/cm.

Colloid Glass. Briefly, the system involves tracking modulated
optical nanoprobe (MOON) tracer particles, prepared by coating
a hemisphere of poly(methyl methacrylate) (PMMA) particles
with 12 nm of aluminum, in colloidal supercooled liquids
comprising PMMA colloids 1.42 μm in diameter at a volume
fraction of 0.51. The solvent is index-matched and density-
matched. Bright-field imaging was used to track these probes
as a function of time in four dimensions (x, y, in-plane, and out-
plane angles), the metal side facing the objective appearing
black. Details of the experiments are published elsewhere.42

CTRW Simulation. To test wavelet analysis on anomalous
diffusion that can be described as continuous time random
walk, we simulated trajectories for which the true statistics are
known. For 1D simulation in this spirit, exponentially distributed
random numbers were generated for the step size, and the
waiting times between steps were drawn from a power law
distribution with exponent 2. To this signal was then added
noise. Noise was generated from a normal distribution with
the standard deviation σn, which is some multiple (λ) of the
standard deviation σs of the step size distribution. For com-
pound noise, two normally distributed random variables, each
with σn = λσs/

√
2, were added. For time-varying noise, normally

distributed random variables with σn = λσs/
√
2, σn = λσs, and

σn = λσs�
√
2were added to the first, second, and last 1/3 of the

trajectory.
SURE and Minimax were selected as the thresholding

methods to compare with universal thresholding because they
are known to be less strict and their implementation is known to
be computationally less expensive than other methods such as
cross-validation.47 The thresholds were calculated following
literature.47,50
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